Linear Algebra Done Right

John Russell

Fourth Edition

CONTENTS CONTENTS

Contents

1	Vec	tor Spaces	3																					2
	1A	Exercises																						2
	1B	Exercises																						5
	1C	Exercises																						5
2	Fini	Finite-Dimensional Vector Spaces														5								
	2A	Exercises																						5
	2B	Exercises																						5
	2C	Exercises																						5
3	Line	ear Maps																						5
	3A	Exercises																						5
	3B	Exercises																						5
	3C	Exercises																						5
	3D	Exercises																						6
	3E	Exercises																						6
	3F	Exercises															•							6
4	Pol	ynomials																						6
	4A	Exercises																						6

1 Vector Spaces

1A Exercises

Problem 1A.1. Show that $\alpha + \beta = \beta + \alpha$ for all α, β in \mathbb{C}

Proof. Let $\alpha = a + bi$ and $\beta = c + di$ for $a, b, c, d \in \mathbb{R}$. We have

$$\alpha + \beta = (a+bi) + (c+di)$$

$$= (a+c) + (b+d)i$$

$$= (c+a) + (d+b)i$$

$$= (c+di) + (a+bi)$$

$$= \beta + \alpha$$

Problem 1A.2. Show that $(\alpha + \beta) + \gamma = \alpha + (\beta + \gamma)$ for all $\alpha, \beta, \gamma \in \mathbb{C}$.

Proof. Let $\alpha = a_1 + a_2 i$, $\beta = b_1 + b_2 i$, and $\gamma = c_1 + c_2 i$ for all $a_k, b_k, c_k \in \mathbb{R}$ where $k \in \{1, 2\}$. We have

$$(\alpha + \beta) + \gamma = [(a_1 + a_2i) + (b_1 + b_2i)] + (c_1 + c_2i)$$

$$= [(a_1 + b_1) + (a_2 + b_2)i] + (c_1 + c_2i)$$

$$= [(a_1 + b_1) + c_1] + [(a_2 + b_2) + c_2]i$$

$$= [a_1 + (b_1 + c_1)] + [a_2 + (b_2 + c_2)]i$$

$$= (a_1 + a_2i) + [(b_1 + c_1) + (b_2 + c_2)i]$$

$$= (a_1 + a_2i) + [(b_1 + b_2i) + (c_1 + c_2i)]$$

$$= \alpha + (\beta + \gamma)$$

Problem 1A.3. Show that $(\alpha\beta)\gamma = \alpha(\beta\gamma)$ for all $\alpha, \beta, \gamma \in \mathbb{C}$.

Proof. Let $\alpha = a_1 + a_2 i$, $\beta = b_1 + b_2 i$, and $\gamma = c_1 + c_2 i$ for all $a_k, b_k, c_k \in \mathbb{R}$ where $k \in \{1, 2\}$. We have

$$(\alpha\beta)\gamma = \left[(a_1 + a_2i)(b_1 + b_2i) \right] (c_1 + c_2i)$$

$$= \left[(a_1b_1 - a_2b_2) + (a_1b_2 + a_2b_1)i \right] (c_1 + c_2i)$$

$$= \left[(a_1b_1 - a_2b_2)c_1 - (a_1b_2 + a_2b_1)c_2 \right] + \left[(a_1b_1 - a_2b_2)c_2 + (a_1b_2 + a_2b_1)c_1 \right]i$$

$$= (a_1b_1c_1 - a_2b_2c_1 - a_1b_2c_2 - a_2b_1c_2) + (a_1b_1c_2 - a_2b_2c_2 + a_1b_2c_1 + a_2b_1c_1)i$$

$$= \left[(a_1b_1c_1 - a_1b_2c_2) - (a_2b_1c_2 + a_2b_2c_1) \right] + \left[(a_1b_1c_2 + a_1b_2c_1) + (a_2b_1c_1 - a_2b_2c_2) \right]i$$

$$= \left[a_1(b_1c_1 - b_2c_2) - a_2(b_1c_2 + b_2c_1) \right] + \left[a_1(b_1c_2 + b_2c_1) + a_2(b_1c_1 - b_2c_2) \right]i$$

$$= (a_1 + a_2i) \left[(b_1c_1 - b_2c_2) + (b_2c_1 + b_1c_2)i \right]$$

$$= (a_1 + a_2i) \left[(b_1 + b_2i)(c_1 + c_2i) \right]$$

$$= \alpha(\beta\gamma)$$

Problem 1A.4. Show that $\gamma(\alpha + \beta) = \gamma \alpha + \gamma \beta$ for all $\gamma, \alpha, \beta \in \mathbb{C}$.

Proof. Let $\alpha = a_1 + a_2i$, $\beta = b_1 + b_2i$, and $\gamma = c_1 + c_2i$ for all $a_k, b_k, c_k \in \mathbb{R}$ where $k \in \{1, 2\}$. We have

$$\gamma(\alpha + \beta) = (c_1 + c_2 i) [(a_1 + a_2 i) + (b_1 + b_2 i)]$$

Problem 1A.5. Show that for every $\alpha \in \mathbb{C}$, there exists a unique $\beta \in \mathbb{C}$ such that $\alpha + \beta = 0$.

Proof.

Problem 1A.6. Show that for every $\alpha \in \mathbb{C}$ with $\alpha \neq 0$, there exists a unique $\beta \in \mathbb{C}$ such that $\alpha\beta = 1$.

Proof.

Problem 1A.7. Show that

$$\frac{-1+\sqrt{3}i}{2}$$

is a cube root of 1 (meaning that its cube equals 1).

Proof.

Problem 1A.8. Find two distinct square roots of i.

Proof.

Problem 1A.9. Find $x \in \mathbb{R}^4$ such that

$$(4, -3, 1, 7) + 2x = (5, 9, -6, 8)$$

Proof.

Problem 1A.10. Explain why there does not exist $\lambda \in \mathbb{C}$ such that

$$\lambda(2, -3i, 5+4i, -6+7i) = (12-5i, 7+22i, -32-9i)$$

Proof.

- 1B Exercises
- 1C Exercises
- 2 Finite-Dimensional Vector Spaces
- 2A Exercises
- 2B Exercises
- 2C Exercises
- 3 Linear Maps
- 3A Exercises

3A	Exercises	4	POLYNOMIALS				

- 3B Exercises
- 3C Exercises
- 3D Exercises
- 3E Exercises
- 3F Exercises
- 4 Polynomials
- 4A Exercises